Understanding the Difference Between Six Sigma and Lean in the Supply Chain

Gary Jing, PhD, MBB

Sept 18, 2006

The Tie Between the Speaker & the Topic

- MS in Reliability & Applied Statistics
- PhD in IE
- Editorial Review Board of Six Sigma Forum Magazine
- Founding MBB at Seagate TCO, the world largest disc drive design center (1998 - 2005)
- 2 patents in disc drive modeling generated from his Sigma work
- Personally trained dozens of BB/GB’s.
- Sr. Mgr., Global Lean Sigma / MBB, Entegris (2005 - present)
 - The group resides in Global Supply Chain, which manages the manufacturing section of the corporation.
Personal Philosophy – Striving for Balance

Topics to be Covered

- The Tie Between the Speaker & the Topic
- Define “Lean” & “Six Sigma”
- The Linkage Between Different Problem Solving Approaches
- A Comparison Between Lean and Six Sigma
- Various Lean - Sigma Integration Models Adopted by Companies
 - Entegris Model: Real examples showing that Lean & Sigma are embedded in each other
 - Seagate Model
- Typical Challenges When Bringing Sigma into a Lean Environment.
- Your Takes vs. Our Takes
Define “Lean” & “Sigma”

Lean Program
- An improvement approach aimed to primarily improve efficiency through removing wastes. Positively correlated

Six Sigma Program
- An improvement approach aimed to primarily improve process capability through reducing variation.

Lean (Six) Sigma Program
- An improvement program/approach aimed to combine both and improve efficiency & capability through primarily removing wastes & variation.

How Does “Lean” See the World – Waste/ Loss

Eight Major Wastes
1. Excess Inventory
2. Waiting
3. Overproduction
4. Rework
5. Over processing
6. Excess motion
7. Transportation
8. Underutilized people

Six Major Losses
1. Breakdown Losses
2. Set-up and Adjustment Losses
3. Idling and Minor Stoppages
4. Reduced Speed Losses
5. Quality Defects and Rework
6. Start-up and Yield Losses
Supply Chain Excellency

Lean Production System

Just in Time
- One-piece Flow
- Cellular Manufacturing
- Pull System
- Standardization
- Setup Reduction
- Inventory Control
- Cross-functional Assoc

Jidoka
- Visual Control
- 5S / Andon
- Response to Abnormality
- Mistake-proofing (Poke-Yoke)
- Ergonomics
- Autonomation
- TPM

Production Smoothing

- Kaizen event is the most popular venue.

How Does “Six Sigma” See the World

Defects

“Six Sigma” means:

1. A statistical term & business metric.
2. A business strategy & initiative.
3. A problem solving / preventing system & methodology - DMAIC.
DMAIC Process (Roadmap)

- **Define**
 - Define the problem;
 - Establish project charter (goals, scope, team & timeline)

- **Measure**
 - Identify customer requirements / Critical To Quality (CTQ’s)
 - Translate into measurable Key Process Output Variables (KPOV’s)
 - Verify measurement system
 - Establish present capability

 - **Identify any factors / Key Process Input Variables (KPIV’s) that may potentially affect the outputs (KPOV’s) through process mapping**

 - **Establish high potential suspects (hypotheses) through cause-effect analysis** (subjective analysis using experiences & expertise)

- **Analyze**
 - Validate the suspects / hypotheses using existing data through statistical testing (objective analysis)

 - Reduce list of high potential KPIV’s to vital few

- **Improve**
 - Generate improvement ideas using soft tools (subjective)
 - Use DOE to generate new data when no existing data available and to optimize & validate outputs (objective)

- **Control**
 - Put in place permanent controls

DMAIC Mind Set

<table>
<thead>
<tr>
<th>Process Map</th>
<th>30 - 50</th>
<th>Inputs Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>C&E and FMEA</td>
<td>10 - 15</td>
<td>Key Process Input Variables (KPIVs)</td>
</tr>
<tr>
<td>Gage R&R, Capability</td>
<td>8 - 10</td>
<td>KPIVs</td>
</tr>
<tr>
<td>Multi-Vari Studies, Correlations</td>
<td>Improve</td>
<td>4-8</td>
</tr>
<tr>
<td>T-Test, ANOM, ANOVA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening DOE’s</td>
<td>Improve</td>
<td>4-8</td>
</tr>
<tr>
<td>DOE’s, RSM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Systems</td>
<td>Control</td>
<td>3-6</td>
</tr>
<tr>
<td>SPC, Control Plans</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Linkage Between Different Problem Solving Approaches

- Although they look different, they are alike in nature

MAIC vs. Alternative Models

![Diagram showing the seven steps of DMAIC and other models]

- Seven-Step
- DMAIC
- PDSA/PDCA
Sample Agenda for Six Sigma Training*

<table>
<thead>
<tr>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro to Course</td>
<td>1.0 hr</td>
</tr>
<tr>
<td>Intro to Six Sigma</td>
<td>3.0</td>
</tr>
<tr>
<td>Defining Projects</td>
<td>3.0 - 7.0</td>
</tr>
<tr>
<td>Intro to Measure</td>
<td>0.5</td>
</tr>
<tr>
<td>Define the Process</td>
<td>3.0</td>
</tr>
<tr>
<td>Cause - Effect Analysis</td>
<td>2.5</td>
</tr>
<tr>
<td>FMEA / PPA</td>
<td>1.5</td>
</tr>
<tr>
<td>Data and Graphical Analysis</td>
<td>2.5</td>
</tr>
<tr>
<td>Measurement Sys Analysis</td>
<td>1.5</td>
</tr>
<tr>
<td>Process Capability</td>
<td>2.0</td>
</tr>
<tr>
<td>Wrap Up</td>
<td>0.5 - 14.0</td>
</tr>
<tr>
<td>Intro to Analyze</td>
<td>0.5</td>
</tr>
<tr>
<td>Basic Statistics - Testing</td>
<td>2.0</td>
</tr>
<tr>
<td>Contingency Tables</td>
<td>1.0</td>
</tr>
<tr>
<td>Sample Size Selection</td>
<td>1.0</td>
</tr>
<tr>
<td>Regression Analysis</td>
<td>2.0</td>
</tr>
<tr>
<td>Wrap-Up</td>
<td>0.5 - 7.0</td>
</tr>
<tr>
<td>Intro to Improve</td>
<td>0.5</td>
</tr>
<tr>
<td>Introduction to Experimentation</td>
<td>1.0</td>
</tr>
<tr>
<td>2 x 2 Experiments</td>
<td>2.0</td>
</tr>
<tr>
<td>DOE Exercise</td>
<td>2.0</td>
</tr>
<tr>
<td>Improving a Business Process</td>
<td>1.5 - 7.0</td>
</tr>
<tr>
<td>Intro to Control</td>
<td>0.5</td>
</tr>
<tr>
<td>Surveys</td>
<td>1.5</td>
</tr>
<tr>
<td>Control Plan</td>
<td>1.5</td>
</tr>
<tr>
<td>Statistical Process Control</td>
<td>2.0</td>
</tr>
<tr>
<td>Agent of Change</td>
<td>1.0</td>
</tr>
<tr>
<td>Wrap-Up, Evaluation</td>
<td>0.5 - 7.0</td>
</tr>
</tbody>
</table>

GB Transactional. A BB training is like a mini MS program in IE.

Six Sigma Tools

Soft Tools
- 5 S’s
- Structured Brainstorming
 - Mind mapping
 - Affinity diagram
- Cause Effect
 - “5 Whys”
 - Fish Bone Diagram
 - Root Cause Analysis
- Process Mapping
 - Non value added
 - Hidden factory
- Preventive Control Plan
 - PPA
 - FMEA
- Error Proofing

Hard Tools
- Gage R&R
- Capability Analysis
- Multi-Variant Studies
- T-Test
- Correlation
- Regression
- ANOM
- ANOVA
- DOE
- SPC

The materials integrity management company
DMAIC Embedded in Kaizen

Kaizen Breakthrough Methodology from TBM

Day 1
- Conceptual training on:
 - Business Process Kaizen
 - Standard Operations
 - 5S
 - Kaizen Methodology
 - Tools & Techniques

Day 2
- Project-Specific Training
- Measure & Analyze Current Work Process
- Formulate Process Improvements

Day 3
- Simulate & Refine Improvements

Day 4
- Evaluate Improvements
- Establish New Standard Process
- Operate Using New Standard Process
- Finalize New Standard Process

Day 5
- Present Results and Celebrate!

A Comparison Between Lean & Six Sigma

- Everyone develops a perspective upon exposure to both
 - Much Literature available
 - What's my take?
A Comparison Between Lean and Six Sigma

<table>
<thead>
<tr>
<th>Differentiation</th>
<th>Lean</th>
<th>Six Sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Interest</td>
<td>Remove waste</td>
<td>Reduce variation</td>
</tr>
<tr>
<td>The Way They Look at the World</td>
<td>Flow / waste</td>
<td>Problem / defect</td>
</tr>
<tr>
<td>Primary Effect</td>
<td>Reduce waste and smooth flow</td>
<td>Reduce defects through reducing variation</td>
</tr>
<tr>
<td>Secondary Effects</td>
<td>Less inventory, fast throughput, better performance, more uniform output, less variation, improved quality.</td>
<td>Improved quality, better performance, less waste, less inventory, fast throughput, uniform process output.</td>
</tr>
<tr>
<td>Format</td>
<td>Typically Kaizen event format; concentrated resources in short timeframe; best for quick & initial gain.</td>
<td>Project format; resources spread over months; suitable for long-term, in-depth study.</td>
</tr>
</tbody>
</table>

A Comparison Between Lean and Six Sigma (cont.)

<table>
<thead>
<tr>
<th>Differentiation</th>
<th>Lean</th>
<th>Six Sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>Has selected sets of approaches for selected sets of situations: e.g., 5S, visual control, setup reduction, etc.</td>
<td>Generic approach DMAIC; one size fits all.</td>
</tr>
<tr>
<td>Efficiency</td>
<td>More efficient in selected sets of situations: e.g., 5S, visual control, setup reduction, leadtime reduction, etc.</td>
<td>Allows more thorough study, more "science", but not as efficient in selected applications.</td>
</tr>
<tr>
<td>Limitation</td>
<td>Statistical data analysis not emphasized; relies more on intuition & common sense.</td>
<td>System view limited; may "over spend" when problem and solutions are simple and apparent.</td>
</tr>
<tr>
<td>Tools</td>
<td>Six Sigma tools ~ Lean tools + Statistics</td>
<td></td>
</tr>
</tbody>
</table>

The materials integrity management company
Problem Types to be Solved

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>Lean</th>
<th>Supply Chain</th>
<th>Six Sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Time Reduction</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Inventory Reduction</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Defect Reduction</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost Reduction</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Low Efficiency Improvement</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Process Design & Improvement</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

They each have their own emphasis, but can ultimately achieve similar results with different efficiency.

Conclusion

- Lean & Sigma each emphasizes and is more efficient than the other in certain areas.
- Going deeper, each alone can achieve the very similar results; yet combined they can leverage each other and be more efficient & effective.
- Practitioners should learn both Lean & Sigma.
Various Lean - Sigma Integration Models Adopted by Various Companies

Possible Integration Model: Tier-Based Integration

<table>
<thead>
<tr>
<th>Differentiate the problem</th>
<th>Lean (Kaizen)</th>
<th>Six Sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>By size</td>
<td>Small or tactical projects (< 1 Mon). The first step in improvement. The 1st punch.</td>
<td>Large or strategic projects (> 1 Mon). The second step in improvement. The 2nd punch.</td>
</tr>
<tr>
<td>By timeframe (to solve)</td>
<td>Weeks</td>
<td>Months</td>
</tr>
<tr>
<td>By format</td>
<td>Fulltime dedicated team - event</td>
<td>Part time dedicated team - project</td>
</tr>
<tr>
<td>By nature</td>
<td>Time reduction / waste</td>
<td>Process variation</td>
</tr>
<tr>
<td>By the doer</td>
<td>Lean practitioner</td>
<td>Sigma practitioner</td>
</tr>
</tbody>
</table>

Most people differentiate by one or a combination of them.
Various Integration Models In Practice

Entegris Model:
- Tier based application +
- Embed Sigma in Kaizen: Example - [Kaizen event involving DOE](#)
- Embed Kaizen in Sigma: Example - [Scrap reclaim project](#)

Seagate Model:
- GB projects cover traditional Kaizen level improvements
- Lean focuses more on higher-level, supply chain activities.

Seagate Model: Improvement Methodologies

```
Lean

Define

Measure

Analyze

Improve

Control

Six Sigma

Identify

Design

Optimize

Validate
```
Challenges in Integration

When Bringing Sigma into a Heavily Lean-Oriented Environment

1. Lack of understanding of the differences between Lean & Sigma.
2. Deeply-rooted mindset to use Lean way to see & solve problems.
3. “We don’t need Sigma if we really do Lean well”.
 - From a Shingo award winner.

Tips / experience:
- I was forced to develop a module (like this one) to address the relationship.
- Quick success of a couple of Sigma projects with good impact will be very helpful in turning the tide.

Challenges in Integration (cont.)

When Bring Sigma into a Poorly Managed Environment (e.g., some of our sites) - Reality is Far From Ideal
- Unstable organization.
 - Frequent management changes / Candidates move around
 - Trainees over-committed: adding up various commitments from management requires 150~200% of nominal work hours
 - “Remodeling while the house is on fire.”

Tips / experiences
- More improvements are achieved through Lean activities in nature.
- Leverage can be acquired by tying projects to daily work.
- Need strong centralized leadership, personal level incentives/metrics.
Our Takes – The Summary

- Lean & Sigma each emphasizes and is more efficient than the other in certain areas.
- Lean & Sigma are embedded within each other and can provide a “one – two punch”.
- *Differentiate* Lean & Sigma activities by size, time, nature, format or simply the practitioner.
- Practitioners should learn both to be more efficient & effective.
- There are challenges when adding Sigma to Lean. Some tips / experiences are shared.

Your Takes – Q&A

• Contact: gary_jing@entegris.com, gary_jing@yahoo.com